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PROPERTY OF:

RESEARCH ON PANEL FLUTTER

By Donald R. Kobett
ABSTRACT

/;:computer program was developed which is particularly well suited for

use 'in parametric flutter investigations where a large quantity of numerical

data required. The underlying analysis used exact, linearized, three-

dimensional aerodynamic theory so the program can be used to investigate the

critical low supersonic regime. Finite panel arrays can be treated, and wind

tunnel installations can be simulated. A limited quantity of informative

numerical data is presented, Most of the data pertains to the flutter of sin-

gle panels with free side edges, with and without adjacent vertical side walli;j ?O
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LIST OF SYMBOLS

(Notation used in the Appendices only is defined at that

point and not repeated here)

coefficient in Fourier expansion of chordwise deflection function
(Eq. (32))

matrix defined in Eq. (38)
chord of one panel (Fig. 1)
defined by Eq. (31)

half wavelength in Fourier expansion of spanwise deflection
shape (Eq. (23))

coefficient in Fourier expansion of spanwise deflection shape
(Eq. (23))

matrix defined in Eq. (38)

span of one panel (Fig. 1)

defined by Eq. (31)

matrix defined in Eq. (38)

coefficient in chordwise deflection function (Eq. (17))
coefficient in spanwise deflection function (Eq. (18))

sound velocity in undisturbed stream

End
2
12(1-v=)

= flexural rigidity of panel
coefficient in chordwise deflection function (Eq. (17))
coefficient in spanwise deflection function (Eq. (18))

modulus of elasticity of panel material

matrix defined in Eq. (38)
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ITn,mu

m,m

,yn

function defined by Eq. (29)
deflection functions (Egs.(19,20))
integral defined by Eq. (36)
structural damping coefficient
integral defined by Eq. (36)

panel thickness (dimensional)
serodynamic integral (Eq. (35))

structural integral (Eq. (9))

/%

structural integral (Eq. (9))

®& - nondimensional flutter frequency

number of chordwise bays in panel array
integers denoting chordwise panels

Mach number

integers -denoting chordwise mode number

number of spanwise bays in panel array
function in aerodynamic integral (Eq. (22))
perturbation pressure at upper surface of panel
defined by Eq. (5)

defined by Eq. (21)

integral defined in Eq. (9)

pU2/2 = dynamic pressure
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gencralized coordinate
integral defined by Eq. (27)
integral defined in Eq. (9)
inverse of aspect ratio
integral defined in Eg. (9)
torque per unit length e#erted by stringer on panel edge
torque per unit length exerted by rib on panel edge
time
free stream velocity
index in Fourier expansion (Eq. (23))
transverse deflection of panel
reference coordinate system
flutter parameter
M2-1
defined in Eq. (22)
frequency of m'th chordwise mode
frequency of n'th spanwise mode

dimensionless coefficient expressing the stringer restraint
against rotation

dimensionless coefficient expressing the rib restraint against
rotation

local coordinate in spanwise direction

local coordinate in chordwise dilrection
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constant in Fourier expansion of spanwise deflection function
(Fig. 3)

defined by Eq. (31)

Tps/p = mass-ratic parameter
Poisson's ratio

nondimensional chordwise coordinate
mass density in undisturbed stream
mass density of panel material

h/a = thickness ratio

chordwise deflection function

displaced coordinate in Fourier expansion of spanwise deflection
shape

spanwise deflection function
local coordinate

dimensional flutter frequency
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I. INTRODUCTION

There is at the present time a serious need for theoretically derived
quantitative data on the flutter of flat panels in a supersonic air stream.
Aircraft and missile designers need the information as do persons interested
in refining the theory by comparison with experimental results. To be gen-
erally useful the data must apply to structural configurations of practical
interest, and must be extensive enough to differentiate the effects of the
numerous nondimensional parameters which characterize the flutter phenomenon.

The flutter problem has been adequately formulated for some time but
1imited numerical data are available because of the considerable effort re-
quired to obtain solutions to the flutter equations. In the present study a
computer program was developed which obtains solutions to the flutter equations
with relative ease. The program is written for the IBM 7094 computer, and has
two significant features:

1. The underlying enalysis is broad in scope such that a wide
variety of physical conditions is covered. (Por example, typical experimental
wind tunnel situations can be analyzed. )

2. A technique for the solution of the flutter equations is used
which is particularly well suited for parametric studies, i.e., extensive
parameter variations can be accomplished with minimum computer effort.

These two features make the computer program of considerable practical value
in view of the preceding discussion.

Computations were carried out for some practical physical configura-
tions. Although a relatively small amount of numerical data was gathered be-
cause of time limitations, some informative preliminary results were obtained.
Of particular interest is a comparison that is made with experimental data for
a flat panel with free side edges, front edge clamped and rear edge effectively
pinned [5}*. The experimental data give the minimum panel thickness required
to prevent flutter as a function of Mach number (M). First mode flutter was
observed in 2ll instances. TFor M = 1.2 the present analysis predicts the
onset of first mode flutter in good agreement with the experiments. For
M = 1.3 there is again good agreement between theory and experiment on the
onset of first mode flutter. However, for this latter Mach number the theory
shows that thicker panels will flutter in the second mode. In other words,
the analysis indicates that first mode flutter is not the critical condition,
contrary to the experimental findings. These results lead to the conclusion
that correlation between theory and experiment needs to be further investigated.

* Numbers in brackets refer to the bibliography.
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II. EQUATIONS OF MOTION

In this and the following sections flutter equations of motlion are
derived for panel arrays of the type shown in Fig. 1.* The panels are geo-~
metrically similar with length a and width b . The array extends to an
arbitrary number of panels in the chordwise and spanwise directions, and is
assumed to be bordered by an inflexible surface extending to infinity. The
upper surface (z > 0) is exposed to uniform supersonic flow in the positive
x direction while a uniform, steady, pressure equal to the static pressure in
the undisturbed stream acts on the lower surface (acoustic effects on the
lower surface and membrane stresses due to static pressure difference are not
admitted). In the present section, equations of motion are derived in general
terms. Specification of boundary conditions and exact formulation of the
aerodynamic forces are presented in later sections.

Appropriate equations of motion are obtained by extending the deriva-
tion in [l] to include the case of a finite number of panels in the spanwise
direction. TFrom small deflection plate theory the equation of motion for the
array is

DI:W'(4X') + 2w1(2x':2yl) + W'(4y'):] + pshW'(Et) + i'(x',y’,t) = 0 (l)**

In Eq. (1) w' 4is the transverse displacement in the =z direction, D the
flexural rigidity of the plate, pg the material density, h the plate
thickness, and P the aerodynamic pressure excess on the gide 2z > 0 .

Introducing dimensionless quantities x, y, w, P, and s according to

x=x'fa ; y=y'/b
v =w'/a ; = p'/pv? (2)
s = afb

Eq. (1) in dimensionless form becomes

% Figures and tables are shown in Appendix A.

*% Differentiation is indicated by superscripts in parentheses or brackets.
This unconventional notation is adopted to help clarify subsequent formu-
Jations.




w(4x) + 28%w(2x,2y) + s4‘w(4y> + (pshé4/D)w(2t)

+ (pUPe3/D)B(x,y,t) = O (3)

Solution of (3) is obtained using the Ritz-Galerkin method. In the determina-
tion of Tlutter boundaries a harmonic solution is sought so the deflection is
approximated by

v =™ ST oqn ()Y, (y) (4)
m
and the pressure is written
0%, ¥) (5)

ﬁ(x,vy’t) =€

where the functions Qm(x) and Y, (y) satisfy the boundary conditions on
the panel.* Following the Ritz-Galerkin method, (4) and (5) are substituted
into (3). The resulting equation is multiplied through by §ﬁ(x)¢n(y) and
integrated across the length and width of the panel array to give,

[ [* N o b (2x) " (2y)
Z qm,n l lel‘lx)@ﬁ dx f \‘,rn dy + 252 & X 35 dx A M ¥, 4y
m o] o] (o] o]
L N 427 PL N
p ha’w
+ st f 8,85 dx f ¢§14y)¢n ay - l:_S_T_} f B85 dx j i ay
o] o] o] (o]

231 Y [V
+ [P_U_Da—] f f p(%,y)e-ty, dy dx = 0 (6)
(o} o

Now define dimensionless parameters

=
fl

o/ (7)

B/q(1-v2) (8)

N
"

* The reason for representing the spanwise dependence of w by a single
function ¢n(Y) is discussed later.
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where
q = dynamic pressure = % pciM2
T = h/a
M = Mach number
¢, = sound velocity in undisturbed stream
E = modulus of elasticity
v = Poisson's ratio
and let

L
Jﬁl,m = §m§ﬁ dx
o]

Y (2x)

>4

Kg,m = j\ Gy 0 A%
o]

Vo
v, 4 (9)
[0}

¥ ey

- y

T = VT, Ay
o

w
1]

dy

O
1
ST
=2
e
B8~
i
N
P
=]

Substitution of (7), (8), and (9) into (6) yields the set of equations

Z 4 2 4
% %, n o¢ [YmeYl,ms + 28Ky pT + s g n Q]

L N
2
- BRI St yf Jr p(x,y)85V, dy dx = 0 (10)
(o] [0}




where

=
I
CI%

Prior to numerical evaluation of (10) two subsidiary steps are necessary.
First the deflection functions & (x) and Y, (y) must be formulated. Then
the aerodynamic integral must be put in a form suitable for computation.



III. THE DEFLECTION FUNCTIONS &,(x) and {,(y)

The deflection functions @m(x) and wn(y) must satisfy the
boundary conditions on the panel array. In the present study two general
physical configurations are to be analyzed, each with its own set of boundary
conditions. These configurations are:

A. A panel array as pictured in Fig. 1, in which the panel edges are
supported by elastic ribs and stringers in the chordwise and
spanwise directions, respectively.

B. A panel array with one panel in the spanwise direction (N = 1),
with the side edges free and the spanwise edges restrained by
stringers as in A.

The deflection functions are formulated for configuration A first.

Configuration A - Boundary conditions for the panel array supported
by elastic ribs and stringers are complex and the exact conditions are not
treated here. Instead, two simplifying assumptions are introduced as follows:

1. The supporting structure is infinitely rigid in bending, and

2. Torsion is transmitted along the line of & rib (stringer) in
the plate only, i.e., the rib (stringer) offers resistance
to rotation proportional to local rotation in the plate.

These assumptions retain most of the important physical features and, at the
same time, reduce the complexity of the problem. As a consequence of the
assumptions the transverse deflections at the edges of the panels are zero
and the bending moments are proportional to the slope perpendicular to the
edges.

In formulating the boundary conditions along the stringers it is
convenient to introduce a local coordinate (Fig. 2).

0 = x-(g-1) ; Z-lsxsj (11)
and a local chordwise deflection

(®) -
=%z 5 L= 1,2,3 ..... L (12)




The elastic restraints against rotation at the leading and trailing
edge stringers are taken as one~half the restraint at the intermediate ones
to simplify the formulation. The boundary and compatibility conditions follow
from the requirement of zero deflection and continuity of slope and moment at
the panel edges.

ém)z(o) = §m,‘£(l) =0 Z=1,2,3.... L (13a)

ééb%_l(l) = @éf (0) 1=2,3.... L (13b)

@éf%zl(l) + exarff%_l(l) = qptff%)(o) - ex@;?%(o) Z=2,3.... L (13¢c)
é,ffi)(o) = exéie)z(o) (13a)

2 = - el (13¢)

where €y is a dimensionless coefficient expressing the stringer restraint

against rotation.¥* Equation (l3a) requires zero deflection at the stringers
and (13b) requires continuity of slope across the stringers. Equation (13c)
is a moment balance at the intermediate stringers while (13d) and (13e) are

moment balances at the bounding ones.

Boundary conditions along the ribs are formulated in similar manner
by introducing local coordinates and spanwise deflection

N=y-(k-1) ; k-lsysk (14)
and

—_— ;
¥ In terms of dimensional quantities, ¢_ 1s given by
i

Txa

Dov /3%

€x

where Tx is the torque per unit length in the stringer and aw/ax is
the slope perpendicular to the stringer.

-7 -




\'r'n = “Jn)k(ﬂ) ; k=1212,3.... N (15)

The boundary and compatibility conditions become

vn,k<0) =4, (1) =0 s k=1,2,3.... N (16a)

¢i?ﬁ_l(l) = ¢£?£(0) ;k=2,3....8  (16b)

,(13) (1) + ey flnlz 1) = 10) - e 40) k=25 W (16)
ﬁez)( 0) = ¢ véni(o) | (164)

{2 = - e i) (16e)

where e is a coefficient expressing the rib restraint against rotation.¥*

The deflection functions &, and Vn are taken to be the natural
vibration mode shapes of beams having the boundary conditions (13) and (16),
respectively. The natural frequencies and mode shapes of a continuous beanm
simply supported at equal intervals are given by Miles [é] . Miles' analysis
was extended to include restraint against rotation in [l] . This development
in [l] is repeated in Appendix B in slightly different form. It is shown that
the deflection functions can be written in the form

*¥ In terms of dimensional quantities, ey is given by
e, = Tyb/D(dw/dy)

where T. is the torque per unit length in the rib and aw/ay is the

slope perpendicular to the rib.




8, 7 = Cn, §Tn(®) + Dy 7fn(1-0) (17)

m, 4 m z m
and
‘bn,k = n,k n(ﬂ) + Dn kfn(l -1) (18)
where
f (8) = sin Y - sin vy sinh v (19)
sinh Ym
- sin ¥, sinh .7
£ (1) = sin ¥,,0 - (20)
sinh ¥
n
Complete formulations for & _ + and ¢ ., are given in Appendix B.
m, £ n,k

Configuration B - Recall that this configuration consists of a
panel array as shown in Fig. 1 having one panel in the spanwise direction
(W = 1), with the side edges free and the spanwvise edges restrained by
stringers. It is assumed that the panel deflects two-dimensionally, i.e.,
aw/ay = 0 , and therefore that Wn = ¢y =1 . The chordwise deflection functicn
@m is the same as for configuration A.

With the deflection functions &, and V{, defined, the ihtegrals
of (9) can be readily evaluated in closed form. For these evaluations the
reader is referred to Appendix D.

One problem remains in the development of usable flutter equations
from (10), namely, integration of the aerodynamic pressure term. This in-
tegral is evaluated in the following section.




IV, AERODYNAMIC INTEGRAL

It is required to evaluate the integral

L PN
f f p(x,¥)8;1, dy dx
o} o}

from (10), where p(x,y) is the aerodynamic pressure acting on the top sur-
face of the panel array. Since the low supersonic Mach number region is of
particular interest,the pressure is obtained from linearized, exact, three-
dimensional aerodynamic theory. Use is made of a result from the analysis

of Luke and St. John [3] which states that the perturbation pressure on the
upper surface for harmonic motion, arbitrary chordwise deflection §m(x) B

and sinusoidal spanwise deflection sin unf/B can be written in the dimension-
less form¥*

Pym = % sin % {@éf) + 3k [(Mg-e)/se]@m + /; P, (§)3,(x-€) dg} (21)

where

P (g) = 05 { [(r22) + 0/, (08) + (1 2/2)7(re)
+j(2kru/ea)Jl(ru§)} (22)

k=wt/g? 5 T,%=K%+ (uwns/BR)? ; % =M° -1

and Jn are Bessel functions of the first kind.
The relative simplicity of this result comes from having a deflection
shape which extends indefinitely in the spanwise direction. This advantage

can be extended to panel arrays of finite spanwise extent by expanding the
spanvise deflection shapes Wn in a sine series. The total pressure can then

* Bb is the dimensional half wavelength of the spanwise defléction shape.

- 10 -




be expressed as a superposition of terms similar to P, in (21). Therefore
let the spanwise deflection be represented by

= > B, y Sin unp/B (23)
= .

The expansion (23), being an odd periodic function, gives wn flanked by
periodic reflections. Therefore B is to be chosen such that the reflections
are uncoupled aerodynamically, in order to achieve the effect of an isolated
finite panel array.* The variable § is the shifted coordinate

$ = yer

where the constant ) depends on B. Criteria for the selection of B and
) are derived in Appendix E.

From (21) and (23) the pressure on the mn'th deflection shape is

n - %m,n 2 Bn,uPu,m (2¢)
u

and the general pressure term becomes

p(,8) =3 Bypn= 3 myn 2 BnPum (25)
m m u

After some manipulation the aerodynamic integral from (10) may be written

L paN
f f p(x,$)3z(x)¥, () af ax =
o <A

5T @, {%ﬁ
m
+ 335 S |:(M2-2)/B] By oF (W5, u} (26)

* For further discussion of this point see Appendix E and Figs. 3 and 4.
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where

L
Rﬁ,m = f 8, (x)35(x) dx (27)
0
L px
Iiﬁ)m,u = f Pu(g)ém(X"g)éﬁ(x) dg dx (28)
o o]
AN
F(U) = f \‘In sin uT__T.Q. d¢ (29)
A B
The integral R- is obtained in closed form by making use of (17) and (19)

(see Appendix D? The integral F(u) can also be readily obtained in closed
form but it is convenient to momentarily postpone further discussion of this
integral.
Two procedures can be used to evaluate I .
m,m,u
1. When T,§ and m are small the Bessel functions in P u(E) can
be approximated by a sum of circular functions [3] such that

a .
Pu(g) = TZ JKME {ar cos A& + Jjb, sin xrg} (30)
where
a, = - (/s + 2]
2
b = 21:)\r/qg3 (31)
A, =T, cos [(2r~l)/4q]n

Then if Qm(x) is expanded in a Fourier sine series

- 12 -




5, (%) = > A, ¢ sin (tm/L)x (32)
t

Im m,u can be evaluated in closed form. Details of this evaluation are given
in Appendlx c. Roughly speaking this procedure is satisfactory for m< 4,

L<2, and Fu” < 10 .

2, VWhen the first procedure is not admissible it is convenient to
first change the order of integration to give

L L
I{n‘,m,u = f Pu(g) f @m(X-g)Qﬁ(x) dx dg (33)
° g

The integration over x can be completed in closed form. TFor this purpose
introduce another local coordinate similar to (11)

= g-(2-1) ; AL-l<E < g (34)
then
1
,m,u Z P (4-L10)Gy , ,(9) 40
o]
- 1 )
+ > P (L-1+g)Hg () do (35)
2=1
L 1
G, o(?) = 2 f %, 7-g+1 (8 P)2g,7(8)
=4 Jo
(36)
L ®
Hﬁ;m,ﬁ(cp) ) -Z j ém,E—,c(l’re-@)@m,z(a) a8
=241 Jo

- 13 -
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Gﬁ m, 4 and H- are integrated in closed form in Appendix C. The integra-
tidns in (35) are evaluated numerically. The first procedure for evaluating
Iﬁ,m,u is used in a previously developed computer program for calculating
flutter boundaries for panel arrays of infinite spanwise extent. The limita-
tions imposed by the Bessel function approximation (Eq. (30)) prohibit its

use on finite span arrays. Consequently, the program developed here makes use
of the second procedure.

It remains to evaluate the Fourier coefficients Bn and the
function F(u) introduced in (26) and (29). These quantitied depend on both
geometrical and aerodynamic details and it is thus appropriate at this point
to describe the specific physical situations that are to be analyzed. There
are five cases in all:

1. A panel array as shown in Fig. 1 with a finite number of panels
in both the chordwise and spanwise direction. The array is bordered by an
inflexible surface extending to infinity in all directions.

2. The same as (1) except that the array extends to infinity in the
spanwise direction.

3. The same as (1) except that the array is flanked on the sides by
vertical walls (a wind tunnel installation for example) an arbitrary distance
from the edge of the array.¥*

4. The same as (1) except that the array has one panel in the span-
wise direction (N = 1) and the side edges are free.

5. The same as (4) except that the array is flanked by vertical
walls as described in (3).

cases (1) - (3) conform to the general geometrical configuration A described
earlier, while (4) and (5) conform to configuration B. The effect of the
vertical walls in (3) and (5) is obtained by introducing image configurations
on each side (Fig. 4). For detailed evaluation of By , and F(u) the
reader is referred to Appendix E.

* The analysis is completed for this option but the option was not programmed
because of time limitations.

- 14 -




V. FIUTTER EQUATIONS AND METHOD OF SOLUTION

Flutter equations are obtained from (10) and (26)

z . 4o 20 4o
E A {EZ (1+Jg) [‘Yme,mS + 25 Km,mT + 8 Jm,mQ]
m
2 — T e 2
- uiag o8 + (3/8) [Rm)ms + 305 pSk(M-2) /8

5 Bn’uF(u)I;n')m)u]} =0 (37)
u

In (37) the stiffness terms are multiplied by (1+jg) to account for struc-
tural damping.

It is convenient to write (37) in matrix form. Therefore, let

A
&
=}
!
i}

{Yé{Jﬁ,m + QSQKI-n—’mT/S + S4QJﬁ’m/S-JL

{C'zﬁ,m} = {R'Iﬁ,m + JJﬁ,mk(Me'Q)/BE + Am,m t J'B'm_,m}
(38)
{Aﬁ,m} = Real{z Bn,uF(u)Im)m)u/S}
u
{Eﬁ,m} = Imag {Z Bn,uF(u)Ir"n,m,u/S}
u
Then (37) can be written
{Z G0 s - i+ Fomafon | =0 o

where {qm} is the flutter vector.

- 15 -




Equation (39) represents a set of simultaneous, homogeneous, algebraic
equations. For a nontrivial solution it is necessary to have

Det {EZZ (1+3g) Egpm - “,kQJE,m + _é_ Cﬁ,m} =0 (40)

Equation (40) is a concise, mathematical statement of the flutter problem.
The computer program must first calculate the elements of the flutter matrix
in terms of selected "free" parameters, and then find what combinations of
free parameters satisfy (40). Setting up the matrix is straightforward and
presents no difficulty. The process of satisfying (40), however, requires
some discussion.

On the surface it appears that the free parameters might be any of
w s Z, k and g . The reduced frequency, k , however, is inadmissible since
it is contained within Ci,m in complicated transcendental form. Further, it
is desirable to make g an input parameter, i.e., to be able to perform
flutter calculations for specific values of g . This leaves only the two
real parameters y and 2 , and since the flutter determinant of (40) is
complex it is necessary that both p and Z be retained as free parameters.
The flutter problem is therefore reduced to one of finding combinations of
real p and Z which satisfy (40), for given input values of g and k .

There is no convenient closed-form type of solution to the posed
problem. A conventional approach is to insert specific real values for, say
p , and solve for the Z's which satisfy (40). The Z's so obtained are
complex in general and it is necessary to interpolate on i to find where
the imaginary part of Z vanishes. The process is complicated by the fact
that for each yu there are m values of Z which satisfy (40). This compli-
cation ultimately leads to the necessity to make successive computer runs to
obtain flutter points for one set of g,k values.

In the present analysis a solution technique is used which reduces
computation time by obtaining flutter points in a single computer run. The
method proceeds as follows. For a given value of i the characteristic
equation of the determinant is obtained. This equation is a polynomial in %
with complex coefficients. Assuming Z to be real, the real and imaginary
rarts are separated into two polynomials
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apZ® + v.o.v. 212 + ag =
(41)

|
o

bpZm + .u.es D12+ by =

Any value of Z (with its associated y ) which satisfies both of Egs. (41)
constitutes a flutter point. A modified flutter criterion is therefore ob-
tained, namely that Egs. (41) have at least one common root. Now (41) will
have a common root if and only if the Sylvester determinant formed from the a4
and by 1is zero [4]. This Sylvester determinant is in essence a single-valued
function of p in contrast with the multi-velued function that arises in the
conventional approach to the solution. In the present computer program the
Sylvester determinant is calculated for a specified array of 1 values, and
an interpolation procedure is then used to find the exact values of p for
vhich it vanishes. These p , with associated Z values, constitute flutter
points. The complete process is accomplished in a single computer run.

A computer program has been developed which uses the solution tech-
nique just described. Numerical considerations dictate the size of flutter
system that can be handled by the program, i.e., the number of chordwise modes,
m , that can be used. The present program operates satisfactorily in general
for m up to six. Specially tailored routines are used for scaling, determi-
nant evaluation and characteristic equation expansion. It is anticipated that
further refinements in these areas, accomplished through selective application
of known computational techniques, would extend the range of general applica-
tion to a greater number of chordwise modes.
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VI. NUMERICAL RESUILS

The computer program obtains flutter points in terms of the two
general parameters

l/u = i%— = air-panel mass ratio ,

s
1/3
and Zl/s =1 [___E___] = stiffness~dynamic pressure ratio
& | q(1-v°) |

Flutter boundaries can be constructed in the l/u - Zl/3 plane by making

successive calculations for Judiciously selected values of reduced flutter
frequency k . When only the critical boundary is sought it is still important
that a range of k be examined whi7h is extensive enough to locate all the
flutter boundaries in the 1/p - z/3 plane. If this is not done the bound-
aries identified as critical may be open to question.

Most of the effort during this contract period went into development
of the computer program. Consequently, a limited quantity of numerical data
was obtained. Critical flutter boundaries were computed for panel arrays with
one chordwise bay (Figs. 6 and 7). Calculations were also carried out for
panel arrays with three chordwise bays. These calculations were exploratory
ones designed to test the adequacy of the computer program. Finally, calcula-
tions were made for panels with free side edges, some in the presence of out-
board vertical walls, for comparison with experimental data.

Flutter Boundaries for an Array of Panels

Critical flutter boundaries obtained in a four mode analysis for a
panel array consisting of one chordwise bay and an infinite number of spanwise
bays are shown in Figs. 6 and 7. Three edge conditions are represented at
each of three Mach numbers, for an aspect ratio of 4 and structural damping
coefficient of 0.0l. The edge condition ¢ = 0 is the pinned condition while
¢ = 1,000 closely approximates the clamped case.¥

* The pinned edge results were obtained earlier under this contract and are
included in [QJ. They are repeated here for comparison purposes.
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For M= 1.25 and 2 the flutter vectors associated with the boundaries
are dominated by the first vacuum mode. Coupling with the other modes is pres-
ent in both cases but is more pronounced for M =2 . For M= J7§. (Fig. 7)
the boundaries for ¢ = 10 and 1,000 are also first mode dominant. For € =0
the critical boundary is composed of three distinct regions. The portion to
the right is third mode dominant, the short loop is fourth mode dominant, and
the remainder is first mode dominant.

To interpret the results in Figs. 6 and 7 it is best to view values
on the abscissa (1/u) as denoting specific combinations of panel material,
panel thickness, and altitude. Then the ordinate values (Zl 3) of points on
the boundaries are inversely proportional to the minimum free stream dynamic
pressure that will cause flutter. Thus larger Z; 5 values correspond to less
stable conditions. It is seen in Figs. 6 and 7, that in all cases, decreasing
¢ has a destabilizing effect, i.e., flutter occurs for larger values of AV
It is also apparent that the effect of varying € diminishes with increasing
Mech number. Finally, comparison of the figures shows that increasing the
Mach number has a stabilizing effect.

Six mode analyses were conducted for pinned edge panel arrays with
three chordwise bays and an infinite number of spanwise bays. These calcula-
tions were intended primarily to assess the adequacy of the computer program.
They were not extensive enough to permit the identification of critical
boundaries and therefore no detailed results are given here.

Flutter Boundaries for a Single Finite Panel

Some calculations were carried out for comparison with the experi-
mental data in [b] and the analytical results in [7]. The experimental data
are for a panel with free side edges, front edge clamped and rear edge effec-
tively pinned. There is a gap between the side edges and the wind tunnel wall
equal to 6.2 per cent of the panel span. Aspect ratios vary between 0.95 and
1.06. The analysis [7] treats the case of a panel with side edges free and
does not include the effect of the wind tunnel wall. In both [6] and [7],
results are presented in the form of thickness-to-prevent-flutter as a function
of Mach number.

Two types of calculations were made here, namely, for

(a) A panel with side edges free surrounded by a quiescent
surface as in [7], and

(b) A panel with side edges free, flanked by vertical sidewalls
to simulate a wind tunnel installation.
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Four mode analyses were conducted using the first four natural vibration modes
of a two-dimensional beam. Twenty terms are carried in the Fourier expansion
of the spanwise deflection shape. (Typical twenty term representations are
shown in Fig. 8). All calculations are for an aspect ratio of unity and a
structural damping coefficient of 0.0l (approximately the mean experimental
values). The experimental edge conditions are not duplicated éxactly since

the present analysis assumes that edge conditions at the front and rear of

the panel are the same., Instead, results are obtained for pinned (e = 0) and
clamped (e = 1,000) conditions to bracket the experimental conditions.

The calculations were carried out first for configuration (a) at
M= 1.2 . The following critical thickness ratios (Tcrit) and frequencies
were obtained.

Dominant’
e Terit k* Mode
0 0.00465 0.134 1
1,000 0.00424 0.275 1

These points agree remarkably well with the experimental results for M = 1.2 ,
namely,

TCI‘it = 0.00438

k = 0.187

For this same case the analysis [7] gives fTopit = 0.0033 at a frequency
"slightly below the second natural frequency." It is seen that the present
results agree better with the experimental data than with [7], even though
the tunnel walls are not simulated.

Calculations were next carried out for configuration (a) at M = 1.3 .
The following results were obtained.

¥ Exact values of k are not determined by calculation since T..4¢ is
obtained by finding where the critical boundary intersects the line in
the l/u - 217 plane denoting experimental conditions. The values
given for k come from linear interpolation between calculated points
on each side of the intersection.
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Dominant

& Terit k Mode
0 0.00564 0.61 2
1,000 0.00426 0.73 2

For this case the experimental results are

Terit = 0-00335

0.165

o
1"

and the analysis [7] gives Topig = 0.0038 and frequency "slightly below the
third natural frequency."

The failure to agree with the experimental data for this case
prompted a closer look at the numerical data. It was noted that subcritical
boundaries associated with the first chordwise mode are present in the region
of general interest. It was not possible to run additional calculations to
determine exactly where these boundaries intersect the experimental condition
line. However, reasonable extrapolation yields the following thickness ratios:

. T
0 0.0036
1,000 0.0032

The corresponding reduced flutter frequencies cannot be cbtained by extrapola-
tion but it can be seen that they are less than 0.25, These values of T and
k again compare well with the experimental data. ’

Calculations were next carried out for configuration (b) to assess
the effect of the wind tunnel walls. The following case was investigated.

M= 1.5
aspect ratio = 1
g = 0.01
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gap to wall = 5 per cent of span

edge conditions = pinned; clamped
The 5 per cent gap is smaller than the actual gap in the experimental setup

(6.2 per cent). It was so taken to allow for the boundary layer displacement
thickness effect. The following results were obtained

Dominant
& Terit k Mode
0 0.0060 0.65 2
1,000 0.0046 0.80 2

The presence of the walls is seen to increase T.. it by about 10 per cent,
i.e., the walls have a slight destabilizing effect. Examination of the
numerical data again revealed the presence of subcritical boundaries associ-
ated with the first mode, but extrapolation of the boundaries was not attempted.

The results that have just been described are summarized below for

clarity.

Source of Mach Edge*  Thickness Dominant Gap to¥  Critical
Data No. Cond. Ratio Freq. Mode Wall Cond.

Present 1.2 p 0.00465 0.134 1 - Yes

" 1.2 c 0.00424  0.275 1 - "
(6] 1.2 P-C 0.00438 0.187 1 6.2% "
[7] 1.2 P-C 0.00530 - 2 - "

Present 1.3 P 0.00564 0.61 2 - "

" 1.3 c 0.00426 0.73 2 - .
(6] 1.3 P-C 0.00335  0.165 1 6.2% "
[7] 1.3 P-C 0.0038 - 3 - "

Present 1.3 P 0.0036 k<0.25 1 - No

" 1.3 C 0.0032 k<0.25 1 - "

" 1.3 P 0.0060 0.85 2 5% Yes

" 1.3 c 0.0046 0.80 2 5% "

¥ Under edge conditions, P indicates pinned, C clamped, and P-C the
experimental conditions of front clamped and rear pinned. The gap to wall
is given in per cent of panel span.

Y




The above results must be considered as preliminary, subject to a
more definitive numerical study. Calculations should be made for additional
reduced frequencies to insure that the points identified as critical are truly
eritical., Experience has shown that it is sometimes easy to miss a complete
boundary, which may be the critical one, even though a well chosen range of
frequencies is used.¥ In this light the case M = 1.2 should be thoroughly
examined for the presence of a critical second mode boundary. Additional
calculations should also be made to examine the convergence of the Galerkin
procedure and of the Fourier expansion of the spanwise deflection shape.

Estimates of Computing Time

During the course of the calculations, estimates were made of com-
puting time. To present these estimates in a meaningful way, it is necessary
first to describe the calculation procedure., A set of input parameters is
selected first., Included are

1. Geometry Code¥**

2. Aspect Ratio

3. Mach number

4. Edge conditions ()

5. Number of chordwise modes

6. Number of terms in expansion of spanwise deflection shape

7. Damping coefficient, g

8. Frequency, k

A run on the computer consists in loading the data corresponding to inputs 1
through 7 and then cycling through a sequence of frequency values. The total

* This difficulty of choosing reduced frequencies is not unigue to the pres-
ent analysis; it is common to all analyses that make use of exact, three-
dimensional aerodynamic theory.

*% QCeometry code identifies the situation to be analyzed; for instance, an
isolated panel with free side edges.
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time for a run is comprised of two separable parts. There is a setup time
during which matrices that do not depend on frequency are calculated and
stored, and there is the time required to process each frequency.

The number of flutter points that are obtained varies from frequency
to frequency and the running time varies accordingly. For the four mode cal-
culations that were made for the single panel with free side edges the follow-
ing averages were obtained.

Set-up time - 0.5 min.
Time per frequency - 0.4 min.
Flutter points per frequency - 3

A few runs made using six chordwise modes indicate that setup time approxi-
mately doubles and running time for each frequency increases by a factor of
about 2-1/2.°

For the runs using six chordwise modes for a panel array with three
chordwise bays, the setup time was about 4 min. and the running time for each
frequency about 1 to 1-1/4 min. The average number of flutter points per
frequency was between 4 and 5.

- 04 -



VII. CONCLUSIONS AND RECOMMENDATIONS

A computer program has been developed which has three significant
features:

1 Tt uses a solution technigque that obtains flutter points in a
single computer run.

2 It can handle up to six-by-six flutter determinants.

3 It can be used to investigate a variety of physical situations,
including that of a single panel installed in a wind tunnel.

Preliminary numerical results suggest the possibility of obtaining meaningful
comparison with experiment.

The computer program should be exploited by using it in a definitive
parametric investigation of the flutter of flat panel arrays.

An attempt should be made to extend the capability of the computer
program to ten-by-ten systems, by refining the implicit numerical operations.
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APPENDIX A

FIGURES 1 THROUGH 8 AND TABLE I
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TABLE A-I

COMPARISON BETWEEN PARTIALLY CIAMPED FREQUENCIES
AND CLAMPED FREQUENCIES (L = 1)

Partially Clamped Frequency (€)

Mode £ Clamped Freguency (€ = «)
L 0 0. 441
2 Y 0.640
3 Y 0.735
4 0 0.790
L 10 0.772
2 10 0.810
S 10 0.838
b 10 0.859
1 100 0.963
2 100 0.964
S 100 0.965
4 100 0.966
1 1,000 0.996
2 1,000 0.996
3 1,000 0.996
4 1,000 0.996
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APPENDIX B

EQUATIONS OF MOTION OF A UNIFORM BEAM ON MANY SUFPORTS WITH
ELASTIC RESTRAINT AGAINST ROTATION
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In this Appendix, Miles' analysis of a continuous beam on equally
spaced supports [QJ , is extended to include the effects of elastic restraints
against rotation at the supports.* The equation of motion of a uniform beam

in harmonic motion is

5(4%) = 3% (B-1)

Tn the formulation of the boundary conditions for a beam supported at x = O,

a, 2a, .... La, it is convenient to introduce a dimensionless local co-
ordinate
8 = g - (5-1) (3-1)a < x < fa (B-2)
so that
NG)WZW) £=1,2,3.... L (B-3)

where y4 = A4a4 .

Taking the elastic restraints against rotation at the intermediate supported
edges twice as large as the elastic restraint at the end points, the boundary

conditions are

@i(o) = éz(l) =0 Z=123.... L (B-4)

@%?i(l) = @ég)(o) 7Z=2,34....L (B-5)

@%?2)(1) + e@%ﬁi(l) = @é?e)(o) - eéée)(o) =234 .... L (B-6)
2 (0) - es®)(0) 5 8® 1) - - {1 (B-7)

* The development given here is nearly identical with that given in Appendix
B of [l] , the principal difference being in the general form that is
selected for the deflection shapes.
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where e is a dimensionless coefficient expressing the stiffness of restraint
of the edge supports.¥

A general solution of (B-3) satisfying (B-4) can be written as

8(8) = ¢ [sin o - (sin y sinh Yg)/sinh V]
+ Dﬁ-izs,in Y(1-8) - (sin Y sinh Y(1-8 ))/sinh N] (B-8)

Substitution of (B-8) into (B-5), (B-6), and (B-7) gives

Cy - Py = BCp.1 - Do 2=2,34.... L (B-9)
QCg + Dy = Czq *+ @5y 2=2,34.... L " (B-10)
qC; + Dy =0 (B-11)
Cr,+aP =0 (B-12)
where
-1
D= [ginh y - sin y] [%inh y cos y - sin y cosh y] (B-13)
_ [ : . : s -1
q = |2y sin y sinh y - e(sinh y cos ¥ - sin y cosh Yi]

W [e(stnn y - sin v)] (B-14)
It is convenient to note for later use, that the conditions q = *1 give modes
that are identical with those of a single span of length 2, namely

* See the report body for details of e .
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$.(9) = q(z_l)[%in ¥@ - (sin y sinh 48)/sinh i]

z

- qZ sin y(1-8) - (sin y sinh y(l-e))/sinh y] (B-15)

It can be readily verified that (B-1S5) satisfies (B-9) through (B-12).

Continuing with the general development, Eg. (B-9) and (B-10) can
be operated upon to give

Cz(1-pq) = 2pDj - Dy_;(1+pq) (B-16)

Djyp -~ 2cos p Dy + Dy =0 (B-17)

where cos p = X4 . (B-18)
pa+l |

The general solution of (B-17) is
DE = A cos gy + B sin Zu (B-19)

and from (B-16) there follows

=L ZpE&cos i + B sin Zp,]
L 1l-pg

C
- (l+pq)[A cos (Z-1)p + B sin (E—l)p.]} (B-20)

Substituting (B-19) and (B-20) back into (B-11) and (B-12) gives, after some
algebraic manipulation,

A{cos p-g) + Bsinp = 0 (B-21)
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B sin L {? - pq2 - iliBE)il:ﬂEl},= 0 (B-22)

1+ pq
For & nontrivial solution it is necessary to have sin Lp = O which gives

A__sinp (B-23)
B q -cosy

Any value of p which satisfies the condition sin Igt = O can be used. Later

considerations of the frequency spectra show that a convenient form is

T m/\l + —Iz-l— (B-24)
vy = ysg) (B-25)

where m =1,2,3 ...., and y_ 1is the solution of (B-18) corresponding to
w, . Now p  satisfies sin Ip, = 0 so from (B-8), (B-16), (B-17), and
(B-23) the modes are

5 -(0) = (%in Iy - 9 sin (E'l)Mn>
Gy = COS My

. <sin (B)m - 9y S10 Bm () (B-25)
qp - €OS m
where
fm(e) = sin y § - (sin yy sinh y 8)/sinh y (B-27)
a, = alvy) (B-28)
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If u, is a multiple of n the terms sin fu, and sin (2-L)uy, in
(B-26) are zero. Equation (B-18) has two possible solutions for this case,
namely

[}
1

q=cosyp==%tl ; ©p=arbitrary

i

cos p =Tl ; g = arbitrary

Le]
]

For the first solution, 4q = 1, (B-26) is indeterminate. However, it was
pointed out earlier that for gq = *1 the modes are identical with those of a
single span of length a . It follows from (B-18), (B-24), and (B-9) through

(B-12) that the cases m = 1, 2L+1, 4L+1 .... , correspond to q = -1 so that
from (B-15)
5. H0) = (-1)F T [e(0) + £,(1-0))] (B-29)
m, £ m m
and if m = L+1, 3IL+1, SI+1 ..... , @a=1 so that
8, 7(8) = 1,(8) - £, (1-0) (3-30)

For the second solution of (B-18), i.e., p = %3 , (B-26) is degenerate and
this solution is discarded.

The free vibration frequencies follow from the vy, which in turn
are determined by (B-18) and (B-24). The permissible values of v and f are
illustrated in Fig. 5 for ¢ = 0 and 10 . The smallest admissible value of v
is obtained for cos p = -1 , corresponding to the smallest v obtained from
(B-18) and (B-24) with m = 1 . Setting m= 2,3 ..... L yields successively
increasing values of vy, with v, < 1.5056 1t {the lowest frequency of a clamped-
clamped beam). Setting m = I+l gives wy = 1.5056 7w but this corresponds to
the solution p = 1 of (B-18) which is degenerate. This solution is there-
fore discarded as trivial. The value m = L+l gives a second value ¥y >
1.5056 1 which is a permissible value, corresponding to the solution q =1
of (B—lB). Successively increasing values of v are obtained by setting
m=L+2, I+3, ...... 2L . BSetting m = 2I+1 yields a trivial solution
y = 2.4998 1 corresponding to p = -1 and a permissible solution y > 2.4998.

it

fl
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Additional frequencies are obtained as indicated, with the trivial or de-
generate solutions being successively the ascending frequencies of a clamped -
clamped beam.

Figure 5 shows that the natural frequencies for the beam are contained
within discrete frequency bands. These bands are independent of the number of
bays, L , and the width of the bands decreases with increasing ¢ , i.e., as
the clamped condition is approached. TFor a beam of L Dbays there are L
discrete natural frequencies in each frequency band. Thus, for an infinitely
extending beam the natural frequencies form & contimuous spectrum throughout
each band.

Table I (Appendix A) gives some insight into the physical significance

of e . In the table the first four frequencies for a one bay beam (L = 1)
with ¢ = 0, 10, 100, and 1,000 are compared respectively to the first four
frequencies for a clamped-clamped beam (¢ = @) . It is seen that, frequency-

wise, ¢ = 10 lies approximately midway between the pinned case (e = 0) and
the clamped case, whereas ¢ = 1,000 very closely approximates the clamped
condition.

To summarize, the chordwise deflection functions used in the flutter
analysis are as follows:¥*

ém’z(e) = cm,zfm(e) + Dm,zfm(l—e) (B-31)
where Cm,Z = sin fp - g sin (Z-Luy
D g = sin (£-1)uy - 9 sin Wy (B-32)
£ (8) = siny 6 - (sin y, sinh y 08)/sinh v, (B-33)
a = aly,) | (B-34)

¥ The multiplying factor /1 N in (B-26) is discarded.
qu - COS

- 43 -




with the special cases

for m=1, 2L+l, 4L+1, ..... ..
and Cpg =1
—= -1
Dy, 3
for m = I+l, 3041, S5L+1, .....

In all cases frequencies are obtained as described earlier, taking

The spanwise deflection function ¢n(y)

(B-35)

(B-36)

€=€x-

is not formulated here since

it can be deduced from the formulations for ém(x) by straightforward manipu-

lation of the notation, taking ¢ = ey -
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APPENDIX C

EVALUATION OF THE AERODYNAMIC INTEGRAL Iﬁ,m,u
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From Egs. (22) and (28) of the report

me)

f f P (£)3 (x-£)8;(x) df dx

where

P (g) = ¢ {-[(ru%) v (6%/p0)] 3,(r,8) + (1,2/2)3(r)
+ a‘(ekru/ez)Jl(rug)}

K = k/p? ; Tu2 = K2 + (ums/Bg)< g2 = M%-1 32 = -1

Two procedures for evaluating I— m,u are outlined in the report. The pur-
pose of this Appendix is to present these procedures in detail.

Procedure 1

This procedure, the more approximate of the two, mekes use of two
basic approximations. ZFirst, the Bessel functions in Pu(g) are approximated
by sums of circular functions [3]

q
Jo(rug) = i S cos (A E) + 2J4q(Fu€)
r=1
1 2 2r-1 .
Jl(l"ug) = a— gl ':cos <4q >n} sin ()\rg) (c-1)
+

[— Tq1(T8) + Tyqun (T8 )]
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where

A, = T, cos (22(;1) n (c-2)

The term(s) appearing outside of the summation sign give an estimate of the
error in the representation and consequently are omitted in the analysis. In
the numerical work, Je(Fug) is replaced by means of the identity

23, (T 8)

u

Io(TE) = - J(TLE)

The second basic approximation introduced in this procedure is the
, in a truncated sine series

expansion of the chordwise deflection function, @m

= i b
@m(x) = > Ay, ¢ sin _%5 (c-3)
t
Substitution of these approximations gives
I - 12 S A A7 = (c-4)
,m,u < £ m,ttm,tTe,t,u
t t
where
I | N . ytL_-JKML )
Zoiu” 5%t T L {Ftet,t (-1)"e Gyg *Hp 3 (c-5)
b; % = Oif t #t
(c-6)

1
'—l
z
o
]
o+l
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r,t

r,t

r,t

0 if (t+t)L is even

= 2t i (t+%)L is odd

n(tg-tz)

o' |®

K 1 3 1
oL | [ ttn/L]2 - (k)°  [A-ta/L]? - (KM)® |

1

K L N
2 li[)‘ld'tﬂ/l’]e - (KmM)2 D\r-tﬂ/LJQ - (xM)2 ]

2L

1 [ )‘r+tﬂ/ L
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Ar -tr/L :'

[@r+tn/p]2 - (1a1)? [}r-tn/rje - (an)®

(c-7)

(c-8)

(c-9)

(c-10)

(c-11)

(c-12)

(c-13)

(c-14)

(c-15)



x +tﬁ L -t/ L
£ =L il + il } (c-16)
2 | [ st/ - (@02 [ tn/n)? - (0
€r 1,8~ Sr,t°r,t *Crtr,3 (c-17)
b6, ° %r,t%r,T F %ttt (c-18)
q
Et = Zl (ardr,t+brfr,t) (c-19)
r=
q
Fy = zzi (arer,t+brcr,t) (c~-20)
r=
q
Gt,'{: = Zl [_(argr,t,'f+brhr,t,jc‘) cos AL
r=
+ 3(agh, ¢ 708 ¢ ) sin A.L] (c-21)
q
Hy g = :Z& [érgr,t,% * brhr,t,EJ (c-22)
Ir=

Procedure 1, just outlined, is suitable only for small values of m, L, and
the argument of the Bessel functions I‘uf; . For large values of these param-
eters the number of terms that must be carried in the series approximations
becomes prohibitive. Roughly speaking the procedure is practical for m < 4,
L<2, and T,§ <10 .

- 49 -




Procedure 2

When the first procedure is not practical it is best to approach the
integral Iﬁ m.u by first changing the order of integration to give
254

L L
Iﬁ,m,u =f Pu(g)fg @m(x-g)@ﬁ(x) dx 4g (c-23)
o

If local coordinates
0 =x~-(2-1) 3 T-lsx<y (c-24)
=0 -(2-1) ; 4-l<gE=y (c-25)

are introduced (C-23) becomes

m,m,u

1 1
f Pu(z-1+cp)f By, g +1(00)35 5(0) a0 do
° P

=
[
e

M
IMe

=

-1 L 1 o
+ _Z f P,(£-1+q) f &, E_z(l+e -q;)@ﬁ,z(e ) 40 do  (C-26)
1 2=4+1 V%0 o}

=
il

From the definition of the chordwise deflection function given in Appendix B,
it is clear that :

B, 4 (6) = Cp g (8) + Dy pFp(1-8)
8, 5-4+1(00) = Cp Fge1f(0-9) + Dy 7. 1 En(1-0+0)

3, 7-0(140-9) = Cpy 7-¢Fn(1408-9) + Dy 7 (-6)
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where

sin Yo

f (v) = sin -
nl ) Yo ” Sim Y,

sinh ypv

Tt is therefore convenient to introduce the following general integral
definitions

® (a0) °
f £, 7(8-p)f5(8) a0 = Fﬁ’m(e-P,e,a.)

= Fﬁ’m(b'P;b,a) - Fﬁ)m(a'P:aJ@) (C"'27)

where from [5]

Pz ,(8-20,0) = }‘:efr(ﬂ““(e-p)fﬁ(e)

N {fgwl”] (00125 0) + fﬁl‘;‘“”’)e](e-p)f-ge)(e)}
X

_ L {f.[(a'+2)e] (0-p)e8)(0) + £llar1)e] (e-p)fiee)(e)}
gy m m m m
Ym

+%fﬁ[(“+2)ej(0~p)fé29)(9)
4:-YE

+ % {fé"'e)(e -p)féfe)(e) + f-ﬁg(d'+3)ej(6-p)fﬁ(e)} (c-28)
8"1’5

and
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Fﬁ’m(e-p,e,a) = 'Tl'—g {fng(a“‘S)e] (G-P)fﬁ(e) - fn(lqe)(e-p)fése)(e)
Ym Y

mX i

+ an(G'Jrl)e:l(e-p)féee)(e) - fng(“"“e)e] (e-p)fi(—le)(e)} (c-29)

In these definitions, fé“e)(e) for ¢ =0 is f,(8) , and not unity as the
notation seems to suggest. Using the definitions (C-27) to (C-29) the aero-
dynamic integral becomes

1

L
Iﬁ,m,u = % Pu(z_lJrq))GnT,m,z((P) d(?
= o

L-1 o1 .
+ g ] Pu(z—l%-cp)HﬁJm)z(cp) dep (c-30)

where

L
Ti,m(1-#1,0) - Fﬁ)m(o’%O)} > Cp,7-4+1%,7

Fz m(0,1-9,0) - Fg n(9-1,0,0)

[ON—
IMe
Q

=
b%
=
+
=
&
=l

L
- {Fa,m(—cp,l,O) - Fﬁ,m(-l,ip,O)] > Dy, 7-44155, 7

L
+ Fﬁ)m(l,l"P;O) - Fﬁ,m(c_p,o,o)} > Do, 5-2+1%, T (c-31)
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L P
Bimg = 2 8y, 3-4(140-0)e5 7(8) a0
£=4t1 Yo

L
T, u(19:0) 'Fm,m(l*p’o’o)} 2 Oy 34%,1

Z=z+l

L
Fi n(®-1,1,0) - Fﬁ,m(~l;l'¢:0)} ‘2;11 Cn,7-2"8,7

L=2+1

-+

L
{Fﬁ,m(o)@:o) - Fﬁ,m( '(P;0,0)} _Z Dm,z-chﬁ’z

L
Fz m(9,1,0) - Fﬁ,m(O,l-@,O)} > Dy 3-405,3 (c-32)
z:z-’-l

1 1
The integrals ji Pu(z-l+@)Gﬁ’m’L(¢) dp and JC Pu(%'l+¢)ﬂﬁ,m,z(¢) dy in

(c-30) are evaluated numerically.
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APPENDIX D

EVALUATION OF INTEGRALS Jg n K& m Bm,m, S, T» Q
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The integrals Jﬁ,m’ Kﬁ,m’ and Rz . involve the chordwise deflection
2
functions § and their derivatives. Therefore introduce local coordinates
and deflections from Appendix B,

9 = z_ - (£-1) (2-1)a < x < Ja (p-1)

& = m,y L =1,2,3, ..... L (D-2)

The integrals can then be written as

L L 1
Ja,m = f 8, (x)3z(x) ax = 2_ oy, 4(8)35 ,(6) a8 (n-3)
Yo l:l 0
L (2x) L 1
Xa,m = f g, (x)gg(x)ax = 2 @fj)(e)@ﬁ ,(8) a8) (D-4)
o] ,G_l 2 >
* (x) L1t (o)
Rem = f 8. (x)eg(x) ax = 2 5, ,(8)ag ,(0) ae (D-5)
o 4=1 Yo 1 ’

These integrals can be evaluated conveniently by referring to the Fﬁ m
J
functions introduced in Appendix C, Egs. (C-28) and (C-29). There results

L
Tam = {Fm)m(l,l,o) - Fﬁ,m(o,o,o)} gl (Cm,f,cr'ﬁ,,e+Dm,LDﬁ,,e)

L

+ {Fﬁ}m(o, -1,0) - Fm,m(l,o,o)} gl (Cu, 4P, 4*Pm, o, 2) (D-6)
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L
Xa,m = {Fﬁ,m(l’l’z) - Fﬁ,m(o’o’e)} 2 (Cu, ¢O, 4*Dm, 40, 1)
=1
L
+ {Fm,m(o,-l,e) - Fﬁ’m(l,o,e) = (Cm,zDﬁ,z+Dm,zCﬁ,f,) (D-7)
L
Rﬁ,m = {Fﬁl,m(l,l,l) - Fﬁ,m(o’o’l)} ;l (Cm,,(’lcﬁ;}&_Dm;ZDﬁ;L)

4

L
{Fm,m(o, -1,1) - Fﬁ,m(l,o,l)] ;—:1 (Cm,gDm,g‘Dm,sz,z) (D-8)

The integrals S, T, and Q@ involve the spanwise deflection shape
\‘;n and its derivatives. Introduce local coordinates and deflection

M=y - (k-1) k-lsy<k (D-9)
b, = \un,k k=1,2,3, «.... N (p-10)
and subsequently obtain
N N 1
2
s = f ¢ ay = > f ¥ an (p-11)
o k=1 Yo
N N 1
: 2
T - f £y ey - 5 [ B ) an (p-12)
o k=1 VYo
N N 1
4
Q= fo x‘vﬁfy)xvn dy = g.l wi}ﬂ)(n)wn,k(n) an (D-13)
= o)
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Since these integrals depend on the spanwise deflection shape, it is again
necessary to consider each of the five physical situations of interest to the
present analysis. These situations are listed in detail in the report body
and in Appendix E. It turns out that for cases 1, 2, and 3

X [En kf(3n)(l) - D, kfgsn)(o)]

n

[0, 00 3, 2200

nkn

nkn

) [5 #(M gy Bn’kfgn)(o)] [an’kfgen)(l) ¥ f)n)kfl(fn)(O)]

N [— (ﬂ)(o) f(ﬂ)(l):, [ f(Qﬂ)(o) + D, 1221])(1)]} (p-16)

nkn

N
Te2 = { oo M) -3, fgﬂ)(oﬂe - M) -5, V0]
1 a7t
* [—n,kfflen)(l) * Dn;kfr(lzn)(o)] [én,kfr(lsm(l) D (Sn)(o)J
- [&n,kf(zn)(o) + Dn’kfl(q?ﬂ)(l)] [é ,kf§15ﬂ)(o) 5§03 (1)]} (D-17)
Q= 9i S (p-18)

S=1
T=Q=20 (D-19)
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APPENDIX E

EVALUATION OF FOURIER COEFFICIENTS B, , AND THE INTEGRAL F(u)
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The spanwise deflection shape ﬁn(y) is expanded in a sine series

— 3 un ) -
b= 2 By, sin —5@ (B-1)
u

where § is the transformed coordinate (Fig. 3)

fp=y+2

2% + N (E-2)

to
]

and ) is a constant to be evaluated. The coefficients Bn u are given by
2

B
B =-2-f 4, (#) sin unf) ag (E-3)
o B

n,u B

These coefficients are to be evaluated for each of the five physical situations
to be analyzed. The situations are repeated here for completeness.

(l) A panel array as shown in Fig. 1 with a finite number of panels
in both the chordwise and spanwise direction. The array is bordered by an
inflexible surface extending to infinity in all directions.

(2) The same as (1) except that the array extends to infinity in
the spanwise direction.

(3) The same as (1) except that the array is flanked on the sides
by vertical walls (a wind tunnel installation for instance) an arbitrary dis-
tance from the edge of the array.

(4) The same as (1) except that the array has one panel in the span-
wise direction (N=1) and the side edges are free.

(5) The same as (4) except that the array is flanked by vertical
walls as described in (3).

- 80 -



Before evaluating the Bn,u it is useful to first determine ) for each
case. QGeometrical aspects of the expansion (E—l) are shown in Fig. 3 for
cases (1) and (4). The finite span deflection shape is depicted in Fig. 3a,
and the periodic expansion of wnw shown in Fig. 3b. The domain of aero-
dynamic influence is illustrated in Fig. 3c. All points inside the shaded
region are aerodynamically coupled to the panel configuration being analyzed.
It is seen that for A = sL/2M the periodic reflections of Y, are outside
the coupled region and the effect of an isclated panel array is obtained.

For cases (3) and (5) the effect of vertical walls is obtained by
introducing fictitious image panels on each side of the real panel. The geo-
metrical aspects of this situation are shown in Fig. 4. The wall locations
must be planes of symmetry in the flow and this situation is realized when

sb < N+2A
M

The desired aerodynamic isolation is obtained by taking )\ = N+3A/2 .

The case of a panel array extending to infinity in the spanwise
direction (case 2) offers some difficulty. In accordance with the discussion
in the report boedy, ﬂn is restricted to cases in which the deflection in

adjacent panels is antisymmetric in which case X =0 and B=1.

In summary, then, ) 1is taken as follows.

Case A

1 sL/2M

2 0

3 larger of sL/2M and N+3A/2
4 sL/2u

5 larger of sL/2M and N+3A/2

The coefficients Bn u ore evaluvated in the following sections.
3
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Case 1 - Panel Array of Finite Spanwise Extent

The deflection is given by

¥, =0 0<pP =
I = A <@ < a+N
iy =0 MN £ @ < 234N (E-4)
From (E-3) there follows
AN )
Byy = % \/‘ wn(¢) sin u; ag (E-5)
A

Introducing local coordinates and a local deflection

y-(k-1) ; k-lsys<k

=
]

L=
t

= Y(M 5 k=L2...N (E-6)

yields
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3 N - (31) - -(sn)
- 2B 2: -
Bn,u ;Z;Z’;Z;Z’k_l [{én kf (1) Dn xtn (0)

(“”) l:cn WF r(ln)(l) - B, (o)]} sin %ﬂ (k1)
(u”) [cn W (2M) 11y 4 D, F 512“)(0)] cos 2 (k1) - { En,k%r(fn)(o)
D@V (2 Vo) -3, kf““m]} sin 30 (k2-1)

(0 5] e v | -

where an,k s ﬁh,k and T,(N) are defined in Appendix B .

Case 2 - Panel Array of Infinite Spanwise Extent

The coefficients for this case are obtained from (E-7) by setting
k=N=B=1. There follows

- (0fe, TV + 5n,11“512m(0)]} (£-8)
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Case 3 - Panel Array of Finite Spanwise Extent with Vertical Side Valls

The deflection is given by (Fig. 4)

From (E-3) there follows

A-A A+N
Bu-f [ @ emag e 2 [ i) en il oy
A X

-N-A

which gives

0< ¢ =< r-N-A
A-N-A 5 ¢ < x;A
MA@ s
A< P s AN
AMN < ¢ < A+N+A
ANHA £ @ < A+ON+A

AMEN+A < § < 2)+N

B

+N+-A

A+2N+HA
ERMRCES-E
A

- 64 -

(E-9)

(E-10)



o
i}

N
eyl H"n,kéf"“)m T (0)

n,u
’ .B%ﬁ uln? k=1

i (%)2[— (T\)(l) k-fr(lm(O)]jl [Sin %T—r (k+r-N-A) + sin l‘gﬂ (k+))

+ sin ‘I-;Il (k+)\+A+N)]

w B2 (e
0 6, B (1) + By uFa 1 (0)] fcos BT era-a) + cos BT (ki)

+ cos 4T (k+x+A+N)]
B

nkn n,

) [E o) -3, 1) - e, o) -3 k—fr(lm(l)ﬂ
X [sin UT (k-1+)\-N-A) + sin Y0 (k-1+)) + sin 40 (k-1+x+A+N):l
B B B

4

m [z 2% 00) + 5, 7PV

cos 9T (k-1+)\-N-A) + cos ¥ (k-1+)) + cos YL (k-l+A+A+N) (E-11)
X B B B

Case 4 - Panel Array with N = 1 and Side Edges Free

The deflection is given by

4, =0 0sg =<2
4, =1 A< P <A+l
§, =0 AL < 6 < 2+l (E-12)
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From (E-3) there follows

1
.2 0 UT (s .
Bou = § fo sin 5 (f)) of (E-13)
or
_2 u ur -
By y = ~ [1-(-1) ] cos 1.3.1 A (E-14)

Case 5 - Panel Array with N =1 , Side Edges Free and with Vertical Side Walls

This case is a special form of case 3 with k =N= ¢ =1.
Straightforward integration gives

B, 4 2 dcos YT (p-A-1) - cos YT (x-A) + cos U (})
’ ugr B B B

- cos YT (3+1) + cos gﬂ (A+A+L)
- cos 4T ()\+A+2)} (E-15)

A second purpose of this Appendix is to evaluate the integral

AN
F(u) = f Y sin und ag (E-16)
A B

introduced in Eq. (29) of the section dealing with the aerodynamic terms. In
evaluating F(u) it is again necessary to be cognizant of the five physical

cases of interest. Comparison of (E-16) with (E-3) shows that for cases (1),
(2), and (4)

F(u) = BB (E-17)

0, /2
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For cases (3) and (5), F(u) can be evaluated in closed form to give:

case (3)
N
F(u) = B S {[—n 3 gsﬂ)(l) 5, kf(zm)(o)
(7, )*-(um)* 1= LL
2
(&) [Bu® Ja) -, ﬁ“’<o>]] stn B (1))
2
[ Bt -5, 2, 2
+D k 51371)(1):‘ gin YT (k-1+%)
B
=(2n) (2 el
) [léﬂ Lén K ne'q (1) + Dy, Tl.(o)] cos %n' (k+))
+ [‘éﬂ [En,kiggn)(o) + En,kfgeﬂ)(l)] cos %Tr— (1:_-]_+)\)} (E-18)
Case (5)
Fla) = %r? [COS g8 - cos oF 0‘*”] (E-19)

NASA-Langley, 1964 CR-80 - 67 -
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“The aeronantical and space activities of the United States shall be
conducted 50 as 1o contribute . . . to the expansion of human knowl-
edge of phenomena in the atmosphere and space. The Adminisiration
shall provide for the widest practicable and appropriate dissemination
of information concerning ils activities and the vesulls thereof.”

—NATIONAL AERONAUTICS AND SPACE ACT OF 1958
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